ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан произвольный треугольник ABC. Постройте прямую, проходящую через вершину B и делящую его на два треугольника, радиусы вписанных окружностей которых равны. Докажите, что можно на каждом ребре произвольного тетраэдра записать по неотрицательному числу так, чтобы сумма чисел на сторонах каждой грани численно равнялась её площади. |
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 293]
Пусть M – точка пересечения диагоналей выпуклого четырёхугольника ABCD, в котором стороны AB, AD и BC равны между собой.
В равнобедренном треугольнике ABC равные стороны AB и CB продолжены за точку B и на этих продолжениях взяты соответственно точки D и E. Отрезки AE, ED и DC равны между собой, а ∠BED ≠ ∠BDE. Найдите угол ABE.
В равнобочной трапеции ABCD угол при основании AD равен α ,
боковая сторона AB равна b . Окружность, касающаяся сторон AB и AD и
проходящая через вершину C , пересекает стороны BC и CD в точках
M и N соответственно. Найдите BM , если
В равнобочной трапеции ABCD угол при основании AD равен
arcsin
В равнобедренном треугольнике ABC параллельно основанию
AC проведена средняя линия MN . Радиус окружности,
описанной около трапеции ACMN , в
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 293]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке