ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 658]      



Задача 115487

Тема:   [ Разные задачи на разрезания ]
Сложность: 2+
Классы: 5,6,7

Пете и Коле выдали две одинаковые фигуры, вырезанные из клетчатой бумаги. Известно, что в каждой фигуре меньше, чем 16 клеток. Петя разрезал свою фигуру на части из четырех клеток (см. рисунок слева), а Коля разрезал свою фигуру на уголки из трех клеток (см. рисунок справа). Приведите пример фигуры, которую могли выдать мальчикам. Покажите, как эту фигуру разрезал на части Петя, и как ее разрезал Коля.


Прислать комментарий     Решение

Задача 116054

Тема:   [ Разрезания на параллелограммы ]
Сложность: 2+
Классы: 6,7

Ниже приведён фрагмент мозаики, которая состоит из ромбиков двух видов: "широких" и "узких" (см. рис.).

Нарисуйте, как по линиям мозаики вырезать фигуру, состоящую ровно из 3 "широких" и 8 "узких" ромбиков. (Фигура не должна распадаться на части.)

Прислать комментарий     Решение

Задача 116061

Тема:   [ Замощения костями домино и плитками ]
Сложность: 2+
Классы: 5,6,7

Разрежьте квадрат 6×6 клеточек на трёхклеточные уголки (см. рис.) так, чтобы никакие два уголка не образовывали прямоугольник 2×3.

Прислать комментарий     Решение

Задача 116466

Тема:   [ Разные задачи на разрезания ]
Сложность: 2+
Классы: 5,6

Разрежьте фигуру (см. рисунок) по линиям сетки на четыре равные фигуры.

Прислать комментарий     Решение

Задача 116654

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 2+
Классы: 5,6,7

Автор: Шноль Д.Э.

Покажите, как разрезать квадрат размером 5×5 клеток на "уголки" шириной в одну клетку так, чтобы все "уголки" состояли из разного количества клеток. (Длины "сторон" уголка могут быть как одинаковыми, так и различными.)

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 658]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .