ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 178]      



Задача 110084

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 4
Классы: 8,9,10

Докажите, что любой треугольник можно разрезать не более чем на три части, из которых складывается равнобедренный треугольник.

Прислать комментарий     Решение

Задача 111356

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4
Классы: 10,11

Квадрат со стороной 1 см разрезан на три выпуклых многоугольника. Может ли случиться, что диаметр каждого из них не превосходит
  а) 1 см;   б) 1,01 см;   в) 1,001 см?

Прислать комментарий     Решение

Задача 115780

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Теорема синусов ]
[ Неравенства для элементов треугольника (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Какие треугольники можно разрезать на три треугольника с равными радиусами описанных окружностей?

Прислать комментарий     Решение

Задача 116662

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Задачи с неравенствами. Разбор случаев ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 5,6,7

План дворца шаха – это квадрат размером 6×6, разбитый на комнаты размером 1×1. В середине каждой стены между комнатами есть дверь. Шах сказал своему архитектору: "Cломай часть стен так, чтобы все комнаты стали размером 2×1, новых дверей не появилось, а путь между любыми двумя комнатами проходил не более, чем через N дверей". Какое наименьшее значение N должен назвать шах, чтобы приказ можно было выполнить?

Прислать комментарий     Решение

Задача 116975

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 5,6,7

Автор: Шноль Д.Э.

Дима разрезал картонный квадрат 8×8 по границам клеток на шесть частей (см. рисунок). Оказалось, что квадрат остался крепким: если положить его на стол и потянуть (вдоль стола) за любую часть в любом направлении, то весь квадрат потянется вместе с этой частью.

Покажите, как разрезать такой квадрат по границам клеток не менее чем на 27 частей, чтобы квадрат оставался крепким и в каждой части было не более 16 клеток.

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 178]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .