ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 235 236 237 238 239 240 241 >> [Всего задач: 1308]      



Задача 107828

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Линейные неравенства и системы неравенств ]
[ Взвешивания ]
Сложность: 3
Классы: 8,9,10

На тарелке лежат 9 разных кусочков сыра. Всегда ли можно разрезать один из них на две части так, чтобы полученные 10 кусочков делились бы на две порции равной массы по 5 кусочков в каждой?

Прислать комментарий     Решение

Задача 109960

Темы:   [ Полуинварианты ]
[ Процессы и операции ]
[ Теория игр (прочее) ]
Сложность: 3
Классы: 8

В колоде 52 карты, по 13 каждой масти. Ваня вынимает из колоды по одной карте. Вынутые карты в колоду не возвращаются. Каждый раз перед тем, как вынуть карту, Ваня загадывает какую-нибудь масть. Докажите, что если Ваня каждый раз будет загадывать масть, карт которой в колоде осталось не меньше, чем карт любой другой масти, то загаданная масть совпадет с мастью вынутой карты не менее 13 раз.
Прислать комментарий     Решение


Задача 115450

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Классическая комбинаторика (прочее) ]
[ Формула включения-исключения ]
Сложность: 3
Классы: 7,8,9,10

Из ряда натуральных чисел вычеркнули все числа, которые являются квадратами или кубами целых чисел.
Какое из оставшихся чисел стоит на сотом месте?

Прислать комментарий     Решение

Задача 116782

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Текстовые задачи (прочее) ]
[ Объединение, пересечение и разность множеств ]
Сложность: 3
Классы: 5,6

Двенадцать малышей вышли во двор играть в песочнице. Каждый, кто принёс ведёрко, принёс и совочек. Забыли дома ведёрко девять малышей, забыли дома совочек двое. На сколько меньше малышей, которые принесли ведёрко, чем тех, которые принесли совочек, но забыли ведёрко?

Прислать комментарий     Решение

Задача 60441

 [Беспорядки]
Темы:   [ Формула включения-исключения ]
[ Перестановки и подстановки ]
[ Объединение, пересечение и разность множеств ]
Сложность: 3+
Классы: 9,10,11

В классе 30 учеников. Сколькими способами они могут пересесть так, чтобы ни один не сел на своё место?

Прислать комментарий     Решение

Страница: << 235 236 237 238 239 240 241 >> [Всего задач: 1308]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .