|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Диагонали четырёхугольника $ABCD$ пересекаются в точке $P$, причём $S^2_{\Delta ABP} + S^2_{\Delta CDP} = S^2_{\Delta BCP} + S^2_{\Delta ADP}$. Докажите, что $P$ — середина одной из диагоналей. Игральный кубик симметричен, но устроен необычно: на двух гранях по два очка, а на остальных четырёх – по одному. Сергей бросил кубик несколько раз, и в результате сумма всех выпавших очков оказалась 3. Найдите вероятность того, что при каком-то броске выпала грань с 2 очками. Рассмотрим алгоритм Евклида из задачи 60488, состоящий из k
шагов. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 37]
Докажите, что граф, в котором каждые две вершины соединены ровно одним простым путем, является деревом.
Докажите, что в дереве каждые две вершины соединены ровно одним простым путем.
Докажите, что в дереве есть вершина, из которой выходит ровно одно ребро (такая вершина называется висячей).
Докажите, что при удалении любого ребра из дерева оно превращается в несвязный граф.
В Заитильщине 57 деревень, между некоторыми из которых проложены дороги. Известно, что из каждой деревни можно попасть в любую другую, притом по единственному маршруту.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 37] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|