ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]      



Задача 78020

Темы:   [ Деревья ]
[ Деление с остатком ]
[ Процессы и операции ]
Сложность: 3
Классы: 8,9

Дан отрезок OA. Из конца отрезка A выходит 5 отрезков AB1, AB2, AB3, AB4, AB5. Из каждой точки Bi могут выходить ещё пять новых отрезков или ни одного нового отрезка и т.д. Может ли число свободных концов построенных отрезков равняться 1001? Под свободным концом отрезка понимаем точку, принадлежащую только одному отрезку (кроме точки O).

Прислать комментарий     Решение

Задача 78266

Темы:   [ Деревья ]
[ Индукция в геометрии ]
Сложность: 3
Классы: 10,11

n точек соединены отрезками так, что каждая точка с чем-нибудь соединена и нет таких двух точек, которые соединялись бы двумя разными путями.
Доказать, что общее число отрезков равно  n – 1.

Прислать комментарий     Решение

Задача 30787

Тема:   [ Деревья ]
Сложность: 3+
Классы: 7,8

В графе все вершины имеют степень 3. Докажите, что в нём есть цикл.

Прислать комментарий     Решение

Задача 30789

Тема:   [ Деревья ]
Сложность: 3+
Классы: 7,8

В стране Древляндия 101 город, и некоторые из них соединены дорогами. При этом каждые два города соединяет ровно один путь.
Сколько в этой стране дорог?

Прислать комментарий     Решение

Задача 30813

Тема:   [ Деревья ]
Сложность: 3+
Классы: 7,8

Дима нарисовал на доске семь графов, каждый из которых является деревом с шестью вершинами. Докажите, что среди них есть два изоморфных.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .