Страница:
<< 30 31 32 33
34 35 36 >> [Всего задач: 1006]
Несколько команд сыграли между собой круговой турнир по волейболу. Будем говорить, что команда
А сильнее команды
B, если либо
А выиграла у
B, либо существует такая команда
C, что
А выиграла у
C, а
C – у
B.
а) Докажите, что есть команда, которая сильнее всех.
б) Докажите, что команда, выигравшая турнир, сильнее всех.
Какие-то две команды набрали в круговом волейбольном турнире одинаковое число очков.
Докажите, что найдутся такие команды А, В и С, что А выиграла у В, В выиграла у С, а С выиграла у А.
В стране Ориентация на всех дорогах введено одностороннее движение, причём из каждого города в любой другой можно добраться, проехав не более чем по двум дорогам. Одну дорогу закрыли на ремонт так, что из каждого города по-прежнему можно добраться до любого другого. Докажите, что для каждых двух городов это можно сделать, проехав не более чем по трём дорогам.
|
|
Сложность: 3+ Классы: 6,7,8
|
В кружке у каждого члена имеется один друг и один враг. Доказать, что
а) число членов чётно.
б) кружок можно разделить на два нейтральных кружка.
|
|
Сложность: 3+ Классы: 6,7,8
|
Из полного 100-вершинного графа выкинули 98 рёбер. Доказать, что он остался связным.
Страница:
<< 30 31 32 33
34 35 36 >> [Всего задач: 1006]