ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 125]      



Задача 77911

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Обыкновенные дроби ]
[ Произведения и факториалы ]
Сложность: 3+
Классы: 8,9

Докажите, что  

Прислать комментарий     Решение

Задача 109551

Темы:   [ НОД и НОК. Взаимная простота ]
[ Обыкновенные дроби ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 7,8,9

Даны такие натуральные числа a и b, что число  a+1/b + b+1/a  является целым.
Докажите, что наибольший общий делитель чисел a и b не превосходит числа   .

Прислать комментарий     Решение

Задача 111900

Темы:   [ Задачи на проценты и отношения ]
[ Обыкновенные дроби ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 7,8,9

На каждом из двух огородов Дед посадил по одинаковому количеству репок. Если в огород заходит Внучка, то она выдергивает ровно ⅓ репок, имеющихся к этому моменту. Если заходит Жучка, то она выдергивает 1/7 репок, а если заходит Мышка, то она выдергивает только 1/12 репок. К концу недели на первом огороде осталось 7 репок, а на втором – 4. Заходила ли Жучка во второй огород?

Прислать комментарий     Решение

Задача 115412

Темы:   [ НОД и НОК. Взаимная простота ]
[ Обыкновенные дроби ]
Сложность: 3+
Классы: 8,9

Знаменатели двух несократимых дробей равны 600 и 700. Найдите наименьшее возможное значение знаменателя их суммы (в несократимой записи).

Прислать комментарий     Решение

Задача 30859

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Обыкновенные дроби ]
[ Произведения и факториалы ]
Сложность: 4-
Классы: 6,7

Рассмотрим число     Докажите, что оно

а) меньше 1/10;   б) меньше 1/12;   в) больше 1/15.

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 125]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .