ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан остроугольный треугольник ABC. Точки M и N – середины сторон AB и BC соответственно, точка H – основание высоты, опущенной из вершины B. Описанные окружности треугольников AHN и CHM пересекаются в точке P (P ≠ H). Докажите, что прямая PH проходит через середину отрезка MN. |
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 1010]
По окружности выписано 10 чисел, сумма которых равна 100. Известно, что сумма каждых трёх чисел, стоящих рядом, не меньше 29.
В компании у каждых двух людей ровно пять общих знакомых. Докажите, что количество пар знакомых делится на 3.
За круглым столом расселись 10 мальчиков и 15 девочек. Оказалось, что имеется ровно 5 пар мальчиков, сидящих рядом.
В углах шахматной доски 3×3 стоят четыре коня: два белых (в соседних углах) и два чёрных.
Пусть M – конечное множество чисел. Известно, что среди любых трёх его элементов найдутся два, сумма которых принадлежит M.
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 1010]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке