Страница: 1
2 3 4 5 6 7 >> [Всего задач: 75]
|
|
Сложность: 2+ Классы: 6,7,8
|
Можно ли поставить на плоскости 100 точек (сначала первую, потом
вторую и так далее до сотой) так, чтобы никакие три точки не лежали на одной
прямой и чтобы в любой момент фигура, состоящая из уже поставленных точек,
имела ось симметрии?
|
|
Сложность: 3- Классы: 5,6,7,8
|
Отметьте на плоскости 6 точек так, чтобы от каждой на
расстоянии 1 находилось ровно три точки.
На плоскости дано 300 точек, никакие 3
которых не лежат на одной прямой.
Докажите, что существует 100 попарно не пересекающихся
треугольников с вершинами в этих точках.
|
|
Сложность: 3 Классы: 8,9,10
|
Внутри квадрата отмечено 100 точек. Квадрат разбит на треугольники таким образом, что вершинами треугольников являются только отмеченные 100 точек и вершины квадрата, причём для каждого треугольника разбиения каждая отмеченная точка либо лежит вне этого треугольника, либо является его вершиной (разбиения такого типа называются триангуляциями). Найдите число треугольников разбиения.
На плоскости отмечено 2000 точек. Можно ли провести прямую, по каждую сторону от которой лежит 1000 точек?
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 75]