ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 1341]      



Задача 35072

Темы:   [ Разрезания (прочее) ]
[ Наглядная геометрия ]
Сложность: 2+
Классы: 7,8,9

Можно ли поверхность единичного куба оклеить четырьмя треугольниками площади 1,5?

Прислать комментарий     Решение

Задача 35528

Тема:   [ Разные задачи на разрезания ]
Сложность: 2+
Классы: 7,8

Как разрезать треугольник на несколько треугольников так, чтобы никакие два из треугольников разбиения не имели целой общей стороны?
Прислать комментарий     Решение


Задача 35660

Тема:   [ Разные задачи на разрезания ]
Сложность: 2+
Классы: 6,7,8

Разрежьте фигуру, полученную из прямоугольника 4×5 вырезанием четырёх угловых клеток 1×1, на три части, не являющиеся квадратами, так, чтобы из этих частей можно было сложить квадрат.

Прислать комментарий     Решение

Задача 35670

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 2+
Классы: 7,8

Замостите плоскость одинаковыми пятиугольниками.
Прислать комментарий     Решение


Задача 35704

Тема:   [ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 2+
Классы: 6,7,8

Расположите на плоскости шесть прямых и отметьте на них семь точек так, чтобы на каждой прямой было отмечено три точки.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 1341]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .