Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 161]
Шесть кружков последовательно соединили отрезками. На каждом отрезке записали некоторое число, а в каждом кружке – сумму двух чисел, записанных на входящих в него отрезках. После этого стёрли все числа на отрезках и в одном из кружков (см. рис.). Можно ли найти число, стёртое в кружке?
|
|
Сложность: 3 Классы: 6,7,8,9
|
В центре куба
сидит жук. Доказать, что он, переползая
через ребра, не сможет обойти все кубики
по одному разу.
|
|
Сложность: 3 Классы: 7,8,9
|
а) Из обычной шахматной доски 8 на 8 вырезали клетки с5 и
g2. Можно ли то, что осталось, замостить доминошками 1 на 2?
б) Тот же вопрос, если вырезали клетки с6 и g2.
|
|
Сложность: 3 Классы: 8,9,10
|
На каждой клетке доски размером 9×9 сидит жук, По свистку каждый из жуков переползает в одну из соседних по диагонали клеток. При этом в некоторых клетках может оказаться больше одного жука, а некоторые клетки окажутся незанятыми.
Докажите, что при этом незанятых клеток будет не меньше 9.
|
|
Сложность: 3 Классы: 7,8,9
|
Кусок сыра имеет форму кубика 3×3×3, из которого вырезан центральный кубик. Мышь начинает грызть этот кусок сыра. Сначала она съедает некоторый кубик 1×1×1. После того, как мышь съедает очередной кубик 1×1×1, она приступает к съедению одного из соседних (по грани) кубиков с только что съеденным. Сможет ли мышь съесть весь кусок сыра?
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 161]