ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 181]      



Задача 55081

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Отношение площадей подобных треугольников ]
Сложность: 3+
Классы: 8,9

На продолжениях медиан AK, BL и CM треугольника ABC взяты точки P, Q и R, причём KP = $ {\frac{1}{2}}$AK, LQ = $ {\frac{1}{2}}$BL и MR = $ {\frac{1}{2}}$CM. Найдите площадь треугольника PQR, если площадь треугольника ABC равна 1.

Прислать комментарий     Решение


Задача 52449

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4-
Классы: 8,9

Медианы AM и BE треугольника ABC пересекаются в точке O. Точки O, M, E, C лежат на одной окружности. Найдите AB, если BE = AM = 3.

Прислать комментарий     Решение


Задача 53235

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Теорема синусов ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC биссектриса AH делит медиану BE в отношении BK : KE = 2, а угол ACB равен 30o. Найдите отношение площади треугольника BCE к площади описанного около этого треугольника круга.

Прислать комментарий     Решение


Задача 54672

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Признаки и свойства параллелограмма ]
Сложность: 4-
Классы: 8,9

Дан четырёхугольник ABCD, в котором BC || AD. Точки K и M — середины сторон CD и AD соответственно. Известно, что отрезки AK и CM пересекаются на диагонали BD. Докажите, что ABCD — параллелограмм.

Прислать комментарий     Решение


Задача 54887

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC медианы AM и CL перпендикулярны, BC = a, AC = b. Найдите площадь треугольника ABM.

Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 181]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .