ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 181]
На сторонах выпуклого четырёхугольника ABCD, площадь которого равна 2, взяты точки: K на AB, L на BC, M на CD, N на AD. При этом AK : KB = 2, BL : LC = 1 : 3, CM : MD = 1, DN : NA = 1 : 5. Найдите площадь шестиугольника AKLCMN.
Через точку пересечения медиан треугольника ABC проходит прямая, пересекающая стороны AB и AC. Расстояния от вершин B и C до этой прямой равны a и b соответственно. Найдите расстояние от вершины A до этой прямой.
Докажите, что медианы треугольника пересекаются в одной точке и делятся ею в отношении 2:1, считая от вершины треугольника.
Точки M и N – середины соседних сторон соответственно BC и CD параллелограмма ABCD. Докажите, что прямые AM и AN делят диагональ BD на три равные части.
На продолжениях медиан AK, BL и CM треугольника ABC взяты
точки P, Q и R, причём
KP =
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 181] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |