Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 19 задач
Версия для печати
Убрать все задачи

Игральную кость бросают шесть раз. Найдите математическое ожидание числа различных выпавших граней.

Вниз   Решение


Найдите радиус наименьшего круга, в котором можно разместить треугольник со сторонами 7, 9 и 12.

ВверхВниз   Решение


Дан треугольник ABC, в котором  AC = BC = 1,  ∠B = 45°.  Найдите угол A.

ВверхВниз   Решение


Даны многочлены P(x) и Q(x) десятой степени, старшие коэффициенты которых равны 1. Известно, что уравнение  P(x) = Q(x)  не имеет действительных корней. Докажите, что уравнение P(x + 1) = Q(x – 1) имеет хотя бы один действительный корень.

ВверхВниз   Решение


В квадрате со стороной 1 расположена фигура, расстояние между любыми двумя точками которой не равно 0, 001. Докажите, что площадь этой фигуры не превосходит: а) 0, 34; б) 0, 287.

ВверхВниз   Решение


Дан треугольник ABC. На его стороне AB выбирается точка P и через нее проводятся прямые PM и PN, параллельные AC и BC соответственно (точки M и N лежат на сторонах BC и AC); Q — точка пересечения описанных окружностей треугольников APN и BPM. Докажите, что все прямые PQ проходят через фиксированную точку.

ВверхВниз   Решение


Существует ли квадратный трёхчлен, который при  x = 2014, 2015, 2016  принимает значения 2015, 0, 2015 соответственно?

ВверхВниз   Решение


Через вершины A и B треугольника ABC проведены две параллельные прямые, а прямые m и n симметричны им относительно биссектрис соответствующих углов. Докажите, что точка пересечения прямых m и n лежит на описанной окружности треугольника ABC.

ВверхВниз   Решение


Решите систему:   .

ВверхВниз   Решение


Автор: Жуков Г.

Квадратный трёхчлен f(x) = ax2 + bx + c принимает в точках 1/a и c значения разных знаков.
Докажите, что корни трёхчлена  f(x) имеют разные знаки.

ВверхВниз   Решение


Докажите, что при параллельном переносе окружность переходит в окружность.

ВверхВниз   Решение


Докажите, что если в выражении  (x² – x + 1)2014  раскрыть скобки и привести подобные слагаемые, то какой-нибудь коэффициент полученного многочлена будет отрицательным.

ВверхВниз   Решение


Внутри каждой стороны параллелограмма выбрано по точке. Выбранные точки сторон, имеющих общую вершину, соединены. Докажите, что центры описанных окружностей четырех получившихся треугольников являются вершинами некоторого параллелограмма.

ВверхВниз   Решение


Пусть H — точка пересечения высот треугольника ABC, а AA' — диаметр его описанной окружности. Докажите, что отрезок A'H делит сторону BC пополам.

ВверхВниз   Решение


Докажите, что диагонали AD, BE и CF описанного шестиугольника ABCDEF пересекаются в одной точке (Брианшон).

ВверхВниз   Решение


Пусть $OABCDEF$ – шестигранная пирамида с основанием $ABCDEF$, описанная около сферы $\omega$. Плоскость, проходящая через точки касания $\omega$ с гранями $OFA$, $OAB$ и $ABCDEF$, пересекает ребро $OA$ в точке $A_1$; аналогично определяются точки $B_1$, $C_1$, $D_1$, $E_1$ и $F_1$. Пусть $\ell$, $m$ и $n$ – прямые $A_1D_1$, $B_1E_1$ и $C_1F_1$ соответственно. Оказалось, что $\ell$ и $m$ лежат в одной плоскости, $m$ и $n$ также лежат в одной плоскости. Докажите, что $\ell$ и $n$ лежат в одной плоскости.

ВверхВниз   Решение


Внутри правильного шестиугольника находится другой правильный шестиугольник с вдвое меньшей стороной.
Доказать, что центр большого шестиугольника лежит внутри малого шестиугольника.

ВверхВниз   Решение


В прямоугольном параллелепипеде ABCDA1B1C1D1 известно, что AB = 3 , BC = 2 , CC1 = 4 . На ребре AB взята точка M , причём AM:MB = 1:2 ; K – точка пересечения диагоналей грани CC1D1D . Найдите угол и расстояние между прямыми D1M и B1K .

ВверхВниз   Решение


Что больше:     или  

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 517]      



Задача 67374

Темы:   [ Вспомогательные подобные треугольники ]
[ Теоремы Чевы и Менелая ]
Сложность: 3
Классы: 8,9,10,11

Диагонали вписанного четырёхугольника $ABCD$ пересекаются в точке $P$. Биссектриса угла $ABD$ пересекает диагональ $AC$ в точке $E$, а биссектриса угла $ACD$ – диагональ $BD$ в точке $F$. Докажите, что прямые $AF$ и $DE$ пересекаются на медиане треугольника $APD$.
Прислать комментарий     Решение


Задача 52515

Темы:   [ Вспомогательные подобные треугольники ]
[ Угол между касательной и хордой ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3+
Классы: 8,9

Около остроугольного треугольника ABC описана окружность. Касательные к окружности, проведённые в точках A и C, пересекают касательную, проведённую в точке B, соответственно в точках M и N. В треугольнике ABC проведена высота BP. Докажите, что BP – биссектриса угла MPN.

Прислать комментарий     Решение

Задача 53109

Темы:   [ Вспомогательные подобные треугольники ]
[ Угол между касательной и хордой ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

В трапеции ABCD основание  AB = a,  основание  CD = b  (a < b).  Окружность, проходящая через вершины A, B и C, касается стороны AD.
Найдите диагональ AC.

Прислать комментарий     Решение

Задача 53248

Темы:   [ Вспомогательные подобные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

В остроугольном треугольнике ABC сторона AB меньше стороны AC, D — точка пересечения прямой DB, перпендикулярной к AB, и прямой DC, перпендикулярной к AC. Прямая, проходящая через точку B перпендикулярно к AD, пересекает AC в точке M. Известно, что  AM = m,  MC = n.  Найдите AB.

Прислать комментарий     Решение

Задача 53851

Темы:   [ Вспомогательные подобные треугольники ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC на стороне AC взята точка D, причём  AD = 3,  cos∠BDC = 13/20,  а  ∠B + ∠ADB = 180°.
Найдите периметр треугольника ABC, если  BC = 2.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 517]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .