Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 512]
M – точка пересечения диагоналей трапеции ABCD. На основании BC выбрана такая точка P, что ∠APM = ∠DPM.
Докажите, что расстояние от точки C до прямой AP равно расстоянию от точки B до прямой DP.
В треугольнике ABC биссектриса AD делит сторону BC в отношении BD : DC = 2 : 1. В каком отношении медиана CE делит эту биссектрису?
Основание треугольника равно a, а высота, опущенная на основание, равна h. В треугольник вписан квадрат, одна из сторон которого лежит на основании треугольника, а две вершины на боковых сторонах. Найдите отношение
площади квадрата к площади треугольника.
В треугольнике ABC с прямым углом C проведены высота CD, и биссектриса CF, DK и DL – биссектрисы треугольников BDC и ADC.
Докажите, что CLFK – квадрат.
На сторонах AB, AC и BC треугольника ABC взяли точки K, L и M соответственно так, что ∠A = ∠KLM = ∠C.
Докажите, что если AL + LM + MB > CL + LK + KB, то LM < LK.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 512]