ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найти геометрическое место центров прямоугольников, описанных около данного остроугольного треугольника. M и N — точки пересечения двух окружностей с центрами O1 и O2. Прямая O1M пересекает 1-ю окружность в точке A1, а 2-ю в точке A2. Прямая O2M пересекает 1-ю окружность в точке B1, а 2-ю в точке B2. Доказать, что прямые A1B1, A2B2 и MN пересекаются в одной точке. В десятичной записи целого числа A все цифры, кроме первой и последней, нули, первая и последняя – не нули, число цифр – не меньше трёх. Имеется m точек, некоторые из которых соединены отрезками так, что каждая соединена с l точками. Какие значения может принимать l? Даны отрезки AB, CD и точка O. Конец отрезка называется "отмеченным", если прямая, проходящая через него и точку O, не пересекает другой отрезок. Сколько может быть отмеченных концов? Сторона треугольника равна
Пусть c – длина гипотенузы, |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 223]
На плоскости дано бесконечное множество прямоугольников, вершины
каждого из которых расположены в точках с координатами (0, 0), (0, m),
(n, 0), (n, m), где n и m — целые положительные числа
(свои для каждого прямоугольника). Докажите, что из этих прямоугольников
можно выбрать два так, чтобы один содержался в другом.
Если дан ряд из 15 чисел
a1, a2,..., a15, (1)
то можно написать второй ряд
b1, b2,..., b15, (2)
где
bi(i = 1, 2, 3,..., 15) равно числу чисел ряда (1), меньших ai.
Существует ли ряд чисел ai, если дан ряд чисел bi:
1, 0, 3, 6, 9, 4, 7, 2, 5, 8, 8, 5, 10, 13, 13?
Взяли три числа x, y, z. Вычислили абсолютные величины попарных разностей x1 = |x - y|, y1 = |y - z|, z1 = |z - x|. Тем же способом по числам x1, y1, z1 построили числа x2, y2, z2 и т.д. Оказалось, что при некотором n xn = x, yn = y, zn = z. Зная, что x = 1, найти y и z.
Доказать, что никакую прямоугольную шахматную доску шириной в 4 клетки нельзя обойти ходом шахматного коня, побывав на каждом поле по одному разу и последним ходом вернувшись на исходную клетку.
В клетки таблицы m×n вписаны некоторые числа. Разрешается одновременно менять знак у всех чисел некоторого столбца или некоторой строки. Доказать, что многократным повторением этой операции можно превратить данную таблицу в такую, у которой суммы чисел, стоящих в каждом столбце и каждой строке, неотрицательны.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 223]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке