ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 312]      



Задача 53195

Темы:   [ Вписанные и описанные окружности ]
[ Касающиеся окружности ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4-
Классы: 8,9

В равнобедренный треугольник с основанием a и углом при основании $ \alpha$ вписана окружность. Кроме того, построена вторая окружность, касающаяся основания, одной из боковых сторон треугольника и вписанной в него первой окружности. Найдите радиус второй окружности.

Прислать комментарий     Решение


Задача 54293

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Площадь трапеции ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4-
Классы: 8,9

В трапеции ABCD углы A и D при основании AD соответственно равны 60o и 30o. Точка N лежит на основании BC, причём BN : NC = 2. Точка M лежит на основании AD, прямая MN перпендикулярна основаниям трапециии и делит её площадь пополам. Найдите отношение AM : MD.

Прислать комментарий     Решение


Задача 104106

Темы:   [ Перпендикулярность прямой и плоскости (прочее) ]
[ Применение тригонометрических формул (геометрия) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4-
Классы: 10,11

Из точки, не лежащей в плоскости, проведены к этой плоскости перпендикуляр и три наклонные, проекции которых на данную плоскость равны a, b и c. Найдите длину перпендикуляра, если наклонные образуют с плоскостью углы, сумма которых равна 90°.
Прислать комментарий     Решение


Задача 53089

Темы:   [ Вписанный угол равен половине центрального ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4-
Классы: 8,9

Через вершины A и C треугольника ABC проведена окружность K, центр которой лежит на описанной окружности треугольника ABC. Окружность K пересекает продолжение стороны BA за точку A в точке M. Найдите угол C, если  MA : AB = 2 : 5,  а  ∠B = arcsin 3/5.

Прислать комментарий     Решение

Задача 53172

Темы:   [ Вписанные и описанные окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Окружность, вписанная в угол ]
Сложность: 4-
Классы: 8,9

В треугольник ABC вписана окружность радиуса R, касающаяся стороны AC в точке D, стороны AB в точке E и стороны BC в точке F. Известно, что  AD = R,
DC = a
.  Найдите площадь треугольника BEF.

Прислать комментарий     Решение

Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 312]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .