ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 312]      



Задача 53184

Темы:   [ Общая касательная к двум окружностям ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

На плоскости даны две окружности радиусов 12 и 7 с центрами в точках O1 и O2, касающиеся некоторой прямой в точках M1 и M2 и лежащие по одну сторону от этой прямой. Отношение длины отрезка M1M2 к длине отрезка O1O2 равно $ {\frac{2\sqrt{5}}{5}}$. Найдите M1M2.

Прислать комментарий     Решение


Задача 53186

Темы:   [ Общая касательная к двум окружностям ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

На плоскости даны две окружности радиусов 8 и 6 с центрами в точках S1 и S2, касающиеся некоторой прямой в точках A1 и A2 и лежащие по одну сторону от этой прямой. Отношение отрезка S1S2 к отрезку A1A2 равно $ \sqrt{3}$. Найдите S1S2.

Прислать комментарий     Решение


Задача 53187

Темы:   [ Общая касательная к двум окружностям ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

На плоскости даны две окружности радиусов 5 и 2 с центрами в точках S1 и S2, касающиеся некоторой прямой в точках A1 и A2 и лежащие по разные стороны от этой прямой. Отношение отрезка A1A2 отрезку S1S2 равно $ {\frac{\sqrt{2}}{2}}$. Найдите A1A2.

Прислать комментарий     Решение


Задача 53270

Темы:   [ Вспомогательная окружность ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3+
Классы: 8,9

В параллелограмме KLMN сторона KL равна 8. Окружность, касающаяся сторон NK и NM, проходит через точку L и пересекает стороны KL и ML в точках C и D соответственно. Известно, что KC : LC = 4 : 5 и LD : MD = 8 : 1. Найдите сторону KN.

Прислать комментарий     Решение


Задача 53673

Темы:   [ Ромбы. Признаки и свойства ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

Радиус окружности, вписанной в ромб, равен r, а острый угол ромба равен $ \alpha$. Найдите сторону ромба.

Прислать комментарий     Решение


Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 312]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .