ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 66]      



Задача 53937

Темы:   [ Диаметр, основные свойства ]
[ Биссектриса угла (ГМТ) ]
Сложность: 2
Классы: 8,9

Найдите внутри треугольника ABC все такие точки P, чтобы общие хорды каждой пары окружностей, построенных на отрезках PA, PB и PC как на диаметрах, были равны.

Прислать комментарий     Решение

Задача 53205

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Биссектриса угла (ГМТ) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Дан прямоугольный треугольник ABC с прямым углом при вершине C. ∠A = α,  биссектриса угла B пересекает катет AC в точке K. На стороне BC как на диаметре построена окружность, которая пересекает гипотенузу AB в точке M. Найдите угол AMK.

Прислать комментарий     Решение

Задача 53921

Темы:   [ Диаметр, хорды и секущие ]
[ Биссектриса угла (ГМТ) ]
Сложность: 3
Классы: 8,9

Равные хорды окружности с центром O пересекаются в точке M. Докажите, что MO – биссектриса угла между ними.

Прислать комментарий     Решение

Задача 53948

Темы:   [ Метод ГМТ ]
[ Биссектриса угла (ГМТ) ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 3
Классы: 8,9

Дан угол и две точки внутри него. Постройте окружность, проходящую через эти точки и высекающую на сторонах угла равные отрезки.

Прислать комментарий     Решение

Задача 64389

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Биссектриса угла (ГМТ) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Высота AA', медиана BB' и биссектриса CC' треугольника ABC пересекаются в точке K. Известно, что  A'K = B'K.
Докажите, что и отрезок C'K имеет ту же длину.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 66]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .