Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 512]      



Задача 115587

Темы:   [ Вспомогательные подобные треугольники ]
[ Площадь трапеции ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Отношение площадей подобных треугольников ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 2+
Классы: 8,9

Площадь трапеции ABCD равна 405. Диагонали пересекаются в точке O, отрезки, соединяющие середину P основания AD с вершинами B и C, пересекаются с диагоналями трапеции в точках M и N. Найдите площадь треугольника MON, если одно из оснований трапеции вдвое больше другого.

Прислать комментарий     Решение

Задача 53756

Тема:   [ Вспомогательные подобные треугольники ]
Сложность: 3
Классы: 8,9

В треугольник с основанием a и высотой h вписан квадрат так, что две его вершины лежат на основании треугольника, а две другие – на боковых сторонах.
Найдите сторону квадрата.

Прислать комментарий     Решение

Задача 54655

Темы:   [ Вспомогательные подобные треугольники ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 3
Классы: 8,9

Точки K и N расположены соответственно на сторонах AB и AC треугольника ABC, причём  AK = BK  и  AN = 2NC.
В каком отношении отрезок KN делит медиану AM треугольника ABC?

Прислать комментарий     Решение

Задача 54843

Темы:   [ Вспомогательные подобные треугольники ]
[ Признаки и свойства касательной ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Окружность, центр которой лежит на гипотенузе AB прямоугольного треугольника ABC, касается двух катетов AC и BC соответственно в точках E и D.
Найдите угол ABC, если известно, что  AE = 1,  BD = 3.

Прислать комментарий     Решение

Задача 67089

Темы:   [ Вспомогательные подобные треугольники ]
[ Теоремы Чевы и Менелая ]
Сложность: 3
Классы: 8,9,10

Пусть AA1, BB1, CC1 – высоты остроугольного треугольника ABC; A2 – точка касания вписанной окружности треугольника AB1C1 со стороной B1C1; аналогично определяются точки B2, C2. Докажите, что прямые A1A2, B1B2, C1C2 пересекаются в одной точке.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 512]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .