Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Куб, стоящий на плоскости, несколько раз перекатили через его рёбра, после чего он вернулся на прежнее место.
Обязательно ли он стоит на той же грани?

Вниз   Решение


а) Какое наибольшее число рёбер может быть в 30-вершинном графе, в котором нет треугольников?
б) Какое наибольшее число рёбер может быть в 30-вершинном графе, в котором нет полного подграфа из четырёх вершин?

Вверх   Решение

Задачи

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 449]      



Задача 55299

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

Две стороны треугольника равны 2$ \sqrt{2}$ и 3, площадь треугольника равна 3. Найдите третью сторону.

Прислать комментарий     Решение


Задача 52792

Темы:   [ Биссектриса делит дугу пополам ]
[ Теорема косинусов ]
[ Прямая Эйлера и окружность девяти точек ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC  BC = 4,  AB = 2 .   Известно, что центр окружности, проходящей через середины сторон треугольника, лежит на биссектрисе угла C. Найдите AC.

Прислать комментарий     Решение

Задача 52940

Темы:   [ Диаметр, основные свойства ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC на стороне AC как на диаметре описана окружность, которая пересекает сторону AB в точке M, а сторону BC в точке N. Известно, что AC = 2, AB = 3, AN = 1, 8. Найдите косинус угла BAC.

Прислать комментарий     Решение


Задача 53114

Темы:   [ Правильный (равносторонний) треугольник ]
[ Теорема косинусов ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9

Докажите, что сумма квадратов расстояний от точки, лежащей на окружности, до вершин правильного вписанного в эту окружность треугольника есть величина постоянная, не зависящая от положения точки на окружности.

Прислать комментарий     Решение

Задача 53234

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Теорема косинусов ]
[ Теорема синусов ]
[ Применение тригонометрических формул (геометрия) ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC биссектриса AK перпендикулярна медиане BM, а  ∠B = 120°.
Найдите отношение площади треугольника ABC к площади описанного около этого треугольника круга.

Прислать комментарий     Решение

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 449]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .