ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Площадь
>>
Отношения площадей
>>
Отношение площадей треугольников с общим углом
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что среди любых шести человек есть либо трое попарно знакомых, либо трое попарно незнакомых. Решение |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 95]
Точка M расположена на стороне AB параллелограмма ABCD, причём BM : MA = 1 : 2. Отрезки DM и AC пересекаются в точке P. Известно, что площадь параллелограмма ABCD равна 1. Найдите площадь четырёхугольника BCPM.
На сторонах AB, BC, CD и AD выпуклого четырёхугольника ABCD расположены точки M, N, K и L соответственно, причём AM : MB = 3 : 2, CN : NB = 2 : 3, CK = KD и AL : LD = 1 : 2. Найдите отношение площади шестиугольника MBNKDL к площади четырёхугольника ABCD.
На сторонах AB, BC и AC треугольника ABC взяты точки C1, A1 и B1 соответственно, причём
= = = 2.
Найдите площадь треугольника
A1B1C1, если площадь треугольника
ABC равна 1.
Через середину M стороны BC параллелограмма ABCD, площадь которого равна 1, и вершину A проведена прямая, пересекающая диагональ BD в точке O. Найдите площадь четырёхугольника OMCD.
Через точки R и E, принадлежащие сторонам AB и AD
параллелограмма ABCD и такие, что AR = ⅔ AB,
AE = ⅓ AD, проведена прямая.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 95] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|