ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 9702]      



Задача 56827

Тема:   [ Треугольники (прочее) ]
Сложность: 2-
Классы: 7,8

Докажите, что биссектрисы треугольника пересекаются в одной точке.
Прислать комментарий     Решение


Задача 57005

Тема:   [ Многоугольники (прочее) ]
Сложность: 2-
Классы: 8,9

Докажите, что выпуклый четырехугольник ABCD можно вписать в окружность тогда и только тогда, когда  $ \angle$ABC + $ \angle$CDA = 180o.
Прислать комментарий     Решение


Задача 57006

Тема:   [ Многоугольники (прочее) ]
Сложность: 2-
Классы: 8,9

Докажите, что в выпуклый четырехугольник ABCD можно вписать окружность тогда и только тогда, когда  AB + CD = BC + AD.
Прислать комментарий     Решение


Задача 57007

Тема:   [ Многоугольники (прочее) ]
Сложность: 2-
Классы: 8,9

а) Докажите, что оси симметрии правильного многоугольника пересекаются в одной точке.

б) Докажите, что правильный 2n-угольник имеет центр симметрии.
Прислать комментарий     Решение


Задача 57008

Тема:   [ Многоугольники (прочее) ]
Сложность: 2-
Классы: 7,8,9

а) Докажите, что сумма углов при вершинах выпуклого n-угольника равна  (n - 2) . 180o.
б) Выпуклый n-угольник разрезан непересекающимися диагоналями на треугольники. Докажите, что количество этих треугольников равно n - 2.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 9702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .