|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На шахматной доске расставлены во всех клетках 32 белых и 32 черных пешки. Пешка может бить пешки противоположного цвета, делая ход по диагонали на одну клетку и становясь на место взятой пешки (белые пешки могут бить только вправо-вверх и влево-вверх, а чёрные – только влево-вниз и вправо-вниз). Другим образом пешки ходить не могут. Какое наименьшее количество пешек может остаться на доске? |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 188]
Найдите количество удачных натуральных чисел, меньших 2010.
Существует ли такое натуральное число A, что если приписать его к самому себе справа, то полученное число окажется полным квадратом?
Найдите все такие нечётные натуральные n > 1, что для любых взаимно простых делителей a и b числа n число a + b – 1 также является делителем n.
Докажите, что существует бесконечно много натуральных n, для которых числитель несократимой дроби, равной 1 + ½ + ... + 1/n, не является степенью простого числа с натуральным показателем.
Найдите все такие натуральные числа n, что для любых двух его взаимно простых делителей a и b число a + b – 1 также является делителем n.
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 188] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|