ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Диагонали четырёхугольника $ABCD$ пересекаются в точке $P$, причём $S^2_{\Delta ABP} + S^2_{\Delta CDP} = S^2_{\Delta BCP} + S^2_{\Delta ADP}$. Докажите, что $P$ — середина одной из диагоналей.

Вниз   Решение


Игральный кубик симметричен, но устроен необычно: на двух гранях по два очка, а на остальных четырёх – по одному. Сергей бросил кубик несколько раз, и в результате сумма всех выпавших очков оказалась 3. Найдите вероятность того, что при каком-то броске выпала грань с 2 очками.

ВверхВниз   Решение


Рассмотрим алгоритм Евклида из задачи 60488, состоящий из k шагов.
Докажите, что начальные числа m0 и m1 должны удовлетворять неравенствам  m1Fk+1m0Fk+2.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 58263

Тема:   [ Разбиение фигур на отрезки ]
Сложность: 2+
Классы: 8,9

Докажите, что четырехугольник (с границей и внутренностью) можно разбить на отрезки, т. е. представить в виде объединения непересекающихся отрезков.
Прислать комментарий     Решение


Задача 58264

Тема:   [ Разбиение фигур на отрезки ]
Сложность: 4+
Классы: 8,9

Докажите, что треугольник можно разбить на отрезки.
Прислать комментарий     Решение


Задача 58265

Тема:   [ Разбиение фигур на отрезки ]
Сложность: 5
Классы: 8,9

Докажите, что круг можно разбить на отрезки.
Прислать комментарий     Решение


Задача 58266

Тема:   [ Разбиение фигур на отрезки ]
Сложность: 5
Классы: 8,9

Докажите, что плоскость можно разбить на отрезки.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .