Страница:
<< 38 39 40 41
42 43 44 >> [Всего задач: 501]
|
|
Сложность: 3- Классы: 9,10
|
Имеется
m белых и
n чёрных шаров, причём
m > n.
Сколькими способами можно все шары разложить в ряд так, чтобы никакие два чёрных шара не лежали рядом?
|
|
Сложность: 3- Классы: 9,10
|
Сколькими способами можно составить букет из 17 цветков, если в продаже имеются гвоздики, розы, гладиолусы, ирисы, тюльпаны и васильки?
|
|
Сложность: 3- Классы: 10,11
|
Рассмотрим лист клетчатой бумаги со стороной клетки, равной 1. Пусть Pk – число всех непересекающихся ломаных длины k, начинающихся в точке O – некотором фиксированном узле сетки. Доказать, что Pk·3–k < 2 для любого k.
|
|
Сложность: 3- Классы: 6,7,8
|
Любую ли сумму из целого числа рублей больше семи, можно уплатить без сдачи денежными купюрами по 3 и 5 рублей?
|
|
Сложность: 3- Классы: 8,9,10
|
В волейбольном турнире с участием 73 команд каждая команда сыграла с каждой по одному разу. В конце турнира все команды разделили на две непустые группы так,
что каждая команда первой группы одержала ровно n побед, а каждая команда второй группы – ровно m побед. Могло ли оказаться, что m ≠ n?
Страница:
<< 38 39 40 41
42 43 44 >> [Всего задач: 501]