ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Ссылки по теме:
Статья Н. Виленкина "Комбинаторика"

Материалы по этой теме:


Подтемы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 501]      



Задача 116990

Темы:   [ Правильные многоугольники ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 9,10,11

Автор: Фольклор

Отмечены вершины и середины сторон правильного десятиугольника (то есть всего отмечено 20 точек).
Сколько существует треугольников с вершинами в отмеченных точках?

Прислать комментарий     Решение

Задача 109483

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Задачи с ограничениями ]
Сложность: 3
Классы: 7,8,9,11

Круглая мишень разбита на 20 секторов, которые нумеруются по кругу в каком-либо порядке числами 1, 2, ..., 20. Если секторы занумерованы, например, в следующем порядке  1, 20, 5, 12, 9, 14, 11, 8, 16, 7, 19, 3, 17, 2, 15, 10, 6, 13, 4, 18,  то наименьшая из разностей между номерами соседних (по кругу) секторов равна  12 – 9 = 3.
Может ли указанная величина при нумерации в другом порядке быть больше 3?
Каково наибольшее возможное значение этой величины?

Прислать комментарий     Решение

Задача 30705

Темы:   [ Раскладки и разбиения ]
[ Сочетания и размещения ]
Сложность: 3
Классы: 7,8

Сколько существует десятизначных чисел, сумма цифр которых равна   а) 2;   б) 3;   в) 4?

Прислать комментарий     Решение

Задача 30717

Темы:   [ Раскладки и разбиения ]
[ Сочетания и размещения ]
Сложность: 3
Классы: 8,9

Шесть ящиков занумерованы числами от 1 до 6. Сколькими способами можно разложить по этим ящикам 20 одинаковых шаров
  а) так, чтобы ни один ящик не оказался пустым?
  б) если некоторые ящики могут оказаться пустыми)?

Прислать комментарий     Решение

Задача 30719

Темы:   [ Раскладки и разбиения ]
[ Сочетания и размещения ]
Сложность: 3
Классы: 8,9

Сколькими способами натуральное число n можно представить в виде суммы
  а) k натуральных слагаемых?
  б) k неотрицательных целых слагаемых?
(Представления, отличающиеся порядком слагаемых, считаются различными.)

Прислать комментарий     Решение

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .