Страница:
<< 42 43 44 45
46 47 48 >> [Всего задач: 501]
[Шахматный город]
|
|
Сложность: 3 Классы: 9,10
|
Рассмотрим прямоугольную сетку размерами m×n – шахматный город, состоящий из "кварталов", разделённых n – 1 горизонтальными и m – 1 вертикальными "улицами". Каково число различных кратчайших путей на этой сетке, ведущих из левого нижнего угла ("точка" (0, 0)) в правый верхний ("точку" (m, n))?
Сколько решений имеет уравнение x1 + x2 + x3 = 1000
а) в натуральных; б) в целых неотрицательных числах?
Сколько существует целых чисел от 1 до 16500, которые
а) не делятся на 5;
б) не делятся ни на 5, ни на 3;
в) не делятся ни на 5, ни на 3, ни на 11?
|
|
Сложность: 3 Классы: 8,9,10,11
|
Докажите, что каждое натуральное число n может быть 2n–1 – 1 различными способами представлено в виде суммы меньших натуральных слагаемых, если два представления, отличающихся хотя бы порядком слагаемых, считать различными.
|
|
Сложность: 3 Классы: 8,9,10
|
В круговом шахматном турнире участвовало шесть человек: два мальчика и четыре девочки. Могли ли мальчики по итогам турнира набрать в два раза больше очков, чем девочки? (В круговом шахматном турнире каждый игрок играет с каждым по одной
партии. За победу дается 1 очко, за ничью – 0,5, за поражение – 0).
Страница:
<< 42 43 44 45
46 47 48 >> [Всего задач: 501]