ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Ссылки по теме:
Статья Н. Виленкина "Комбинаторика"

Материалы по этой теме:


Подтемы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 501]      



Задача 73608

Темы:   [ Сочетания и размещения ]
[ Задачи с ограничениями ]
[ Дискретное распределение ]
Сложность: 3
Классы: 8,9,10

На лотерейном билете требуется отметить 8 клеточек из 64. Какова вероятность того, что после розыгрыша, в котором также будет выбрано 8 каких-то клеток из 64 (все такие возможности равновероятны), окажется, что угаданы
  а) ровно 4 клетки?   б) ровно 5 клеток?   в) все 8 клеток?

Прислать комментарий     Решение

Задача 76433

Темы:   [ Раскладки и разбиения ]
[ Сочетания и размещения ]
[ Арифметическая прогрессия ]
Сложность: 3
Классы: 8,9,10

Сколькими различными способами можно разложить натуральное число n на сумму трёх натуральных слагаемых? Два разложения, отличающиеся порядком слагаемых, считаются различными.

Прислать комментарий     Решение

Задача 76510

Темы:   [ Десятичная система счисления ]
[ Правило произведения ]
Сложность: 3
Классы: 8,9

Даны 6 цифр: 0, 1, 2, 3, 4, 5. Найти сумму всех четырёхзначных чётных чисел, которые можно написать этими цифрами (одна и та же цифра в числе может повторяться).

Прислать комментарий     Решение

Задача 77985

Темы:   [ Разбиения на пары и группы; биекции ]
[ Классическая комбинаторика (прочее) ]
[ Многоугольники (прочее) ]
Сложность: 3
Классы: 9

На окружности даны точки A1, A2,..., A16. Построим все возможные выпуклые многоугольники, вершины которых находятся среди точек A1, A2,..., A16. Разобьём эти многоугольники на две группы. В первую группу будут входить все многоугольники, у которых A1 является вершиной. Во вторую группу входят все многоугольники, у которых A1 в число вершин не входит. В какой группе больше многоугольников?

Прислать комментарий     Решение

Задача 78097

Темы:   [ Десятичная система счисления ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 8,9

От A до B  999 км. Вдоль дороги стоят километровые столбы, на которых написаны расстояния до A и до B, , ..., .
Сколько среди них таких, на которых имеются только две различные цифры?

Прислать комментарий     Решение

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .