Страница:
<< 46 47 48 49
50 51 52 >> [Всего задач: 502]
Каких чисел больше среди натуральных чисел от 1 до 1000000 включительно:
представимых в виде суммы точного квадрата и точного куба или не представимых
в таком виде?
|
|
Сложность: 3 Классы: 7,8,9,10
|
Из ряда натуральных чисел вычеркнули все числа, которые являются квадратами или кубами целых чисел.
Какое из оставшихся чисел стоит на сотом месте?
|
|
Сложность: 3 Классы: 8,9,10
|
В круговом шахматном турнире участвует 9 мальчиков и 3 девочки (каждый играет с каждым один раз, победа – 1 очко; ничья – 0,5; поражение – 0). Может ли в итоге оказаться, что сумма очков, набранных всеми мальчиками, будет равна сумме очков, набранных всеми девочками?
|
|
Сложность: 3 Классы: 10,11
|
Дан правильный девятиугольник.
Сколькими способами можно выбрать три его вершины так, чтобы они являлись вершинами равнобедренного треугольника?
|
|
Сложность: 3 Классы: 8,9,10,11
|
Докажите, что если a1 ≥ a2 ≥ ... ≥ an, b1 ≥ b2 ≥ ... ≥ bn, то наибольшая из сумм вида a1bk1 + a2bk2 + ... + anbkn
(k1, k2, ..., kn – перестановка чисел
1, 2, ..., n), это сумма a1b1 + a2b2 + ... + anbn, а наименьшая – сумма a1bn + a2bn–1 + ... + anb1.
Страница:
<< 46 47 48 49
50 51 52 >> [Всего задач: 502]