ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 2440]      



Задача 35637

Темы:   [ Делимость чисел. Общие свойства ]
[ Классические неравенства (прочее) ]
Сложность: 3-
Классы: 8,9

Сумма двух натуральных чисел равна 201. Докажите, что произведение этих чисел не может делиться на 201.

Прислать комментарий     Решение

Задача 35663

Темы:   [ Четность и нечетность ]
[ Подсчет двумя способами ]
Сложность: 3-
Классы: 8,9

В клетках квадратной таблицы 10×10 расставлены числа от 1 до 100. Пусть S1, S2, ..., S10 – суммы чисел, стоящих в столбцах таблицы.
Могло ли оказаться так, что среди чисел S1, S2, ..., S10 каждые два соседних различаются на 1?

Прислать комментарий     Решение

Задача 60467

Темы:   [ Простые числа и их свойства ]
[ Арифметическая прогрессия ]
Сложность: 3-
Классы: 8,9

Существуют ли арифметическая прогрессия, состоящая лишь из простых чисел?

Прислать комментарий     Решение

Задача 60628

Темы:   [ Четность и нечетность ]
[ Степень вершины ]
Сложность: 3-
Классы: 7,8

Каждый из людей, когда-либо живших на земле, сделал определённое число рукопожатий.
Докажите, что число людей, сделавших нечётное число рукопожатий, чётно.

Прислать комментарий     Решение

Задача 60684

Темы:   [ Арифметика остатков (прочее) ]
[ Текстовые задачи (прочее) ]
Сложность: 3-
Классы: 7,8,9

В магазине было 6 ящиков, массы которых соответственно 15, 16, 18, 19, 20 и 31 килограммов. Две фирмы приобрели пять ящиков, причём одна из них взяла по массе яблок в два раза больше чем другая. Какой ящик остался в магазине?

Прислать комментарий     Решение

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .