Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Автор: Акопян Э.

Мальвина записала равенство  МА·ТЕ·МА·ТИ·КА = 2016000  и предложила Буратино заменить одинаковые буквы одинаковыми цифрами, разные буквы – разными цифрами, чтобы равенство стало верным. Есть ли у Буратино шанс выполнить задание?

Вниз   Решение


После экспериментов с мнимой единицей, Коля Васин занялся комплексной экспонентой. Пользуясь формулами задачи 61115, он смог доказать, что  sin x  всегда равен нулю, а  cos x  – единице:

   
Где ошибка в приведённых равенствах?

ВверхВниз   Решение


Ромб ABCD и параллелограмм BCFE с углом $ \angle$BCF = 120o расположены так, что точка E лежит на отрезке AD, а точка F — на продолжении стороны AD за точку D. Площадь четырёхугольника BCDE составляет $ {\frac{3}{4}}$ площади ромба. Найдите углы ромба.

ВверхВниз   Решение


Автор: Бибиков П.

Дан треугольник $ABC$. Точки $A_1$, $A_2$, $B_1$, $B_2$ берутся на его описанной окружности так, что $A_1B_1\parallel AB$, $A_1A_2\parallel BC$, $B_1B_2\parallel AC$. Прямые $AA_2$ и $CA_1$ пересекаются в точке $A'$, а прямые $BB_2$ и $CB_1$ – в точке $B'$. Докажите, что все прямые $A'B'$ проходят через одну точку.

ВверхВниз   Решение


  Числа m и n называются дружественными, если сумма собственных делителей числа m равна n и, наоборот, сумма собственных делителей числа n равна m. Другими словами, числа m и n являются дружественными, если  σ(m) – m = n  и  σ(n) – n = m.
  Докажите, что если все три числа  p = 3·2k–1 – 1,  q = 3·2k – 1  и  r = 9·22k–1 – 1  – простые, то числа  m = 2kpq  и  n = 2kr  – дружественные. Постройте примеры дружественных чисел.

Вверх   Решение

Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 187]      



Задача 64951

Темы:   [ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Примеры и контрпримеры. Конструкции ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 9,10

Сумма десяти натуральных чисел равна 1001. Какое наибольшее значение может принимать НОД (наибольший общий делитель) этих чисел?

Прислать комментарий     Решение

Задача 65001

Темы:   [ Числовые последовательности (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 7,8,9

В ряд записаны 20 различных натуральных чисел. Произведение каждых двух из них, стоящих подряд, является квадратом натурального числа. Первое число равно 42. Докажите, что хотя бы одно из чисел больше чем 16000.

Прислать комментарий     Решение

Задача 65136

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7

Из одинакового количества квадратов со сторонами 1, 2 и 3 составьте квадрат наименьшего возможного размера.

Прислать комментарий     Решение

Задача 65517

Темы:   [ Делимость чисел. Общие свойства ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

Каково наибольшее количество последовательных натуральных чисел, у каждого из которых ровно четыре натуральных делителя (включая 1 и само число)?

Прислать комментарий     Решение

Задача 65637

Темы:   [ Ребусы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 6,7,8

Автор: Акопян Э.

Мальвина записала равенство  МА·ТЕ·МА·ТИ·КА = 2016000  и предложила Буратино заменить одинаковые буквы одинаковыми цифрами, разные буквы – разными цифрами, чтобы равенство стало верным. Есть ли у Буратино шанс выполнить задание?

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 187]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .