ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 694]      



Задача 60585

Тема:   [ Числа Фибоначчи ]
Сложность: 4-
Классы: 9,10,11

Определение. Последовательность чисел Люка
{L0, L1, L2, ...} = {2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, ...}
задается равенствами L0=2, L1=1, Ln=Ln-1+ Ln-2 при n>1.
Докажите, что числа Люка связаны с числами Фибоначчи соотношениями:
а) Ln = Fn - 1 + Fn + 1;
б) Fn = Ln - 1 + Ln + 1;
в) F2n = Ln . Fn;
г) Ln + 12 + Ln2 = 5F2n + 1;
д) Fn + 2 + Fn - 2 = 3Fn.

Прислать комментарий     Решение

Задача 60622

Темы:   [ Числа Фибоначчи ]
[ Цепные (непрерывные) дроби ]
[ Алгоритм Евклида ]
Сложность: 4-
Классы: 9,10,11

Докажите, что при  k ≥ 1  выполняется равенство:   = [aFk; aFk–1, ..., aF0],   где {Fk} – последовательность чисел Фибоначчи.

Прислать комментарий     Решение

Задача 60755

Темы:   [ Числа Фибоначчи ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 9,10,11

Пользуясь результатом задачи 60579, найдите остатки, которые при простом p дают числа Fp и Fp+1 при делении на p.

Прислать комментарий     Решение

Задача 61127

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Треугольник Паскаля и бином Ньютона ]
[ Комплексные числа помогают решить задачу ]
Сложность: 4-
Классы: 9,10,11

а) Докажите равенство  

б) Вычислите сумму  

Прислать комментарий     Решение

Задача 61129

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Треугольник Паскаля и бином Ньютона ]
[ Комплексные числа помогают решить задачу ]
Сложность: 4-
Классы: 10,11

Докажите равенство:  

Прислать комментарий     Решение

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .