ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Докажите, что при 0 $ \leqslant$ $ \varphi$ $ \leqslant$ $ {\frac{\pi}{2}}$ выполняется неравенство

cos sin$\displaystyle \varphi$ > sin cos$\displaystyle \varphi$.


Вниз   Решение


В 10 коробках лежат карандаши (пустых коробок нет). Известно, что в разных коробках разное число карандашей, причём в каждой коробке все карандаши разных цветов. Докажите, что из каждой коробки можно выбрать по карандашу так, что все они будут разных цветов.

ВверхВниз   Решение


Для каких значений x выполняется неравенство  

ВверхВниз   Решение


Даны четыре окружности S1, S2, S3, S4. Пусть S1 и S2 пересекаются в точках A1 и A2, S2 и S3 — в точках B1 и B2, S3 и S4 — в точках C1 и C2, S4 и S1 — в точках D1 и D2 (рис.). Докажите, что если точки A1, B1, C1, D1 лежат на одной окружности S (или прямой), то и точки A2, B2, C2, D2 лежат на одной окружности (или прямой).


Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 25]      



Задача 61228

Тема:   [ Обратные тригонометрические функции ]
Сложность: 2
Классы: 9,10

Докажите формулы:

arcsin(- x) = - arcsin x,    arccos(- x) = $\displaystyle \pi$ - arccos x.


Прислать комментарий     Решение

Задача 61229

Тема:   [ Обратные тригонометрические функции ]
Сложность: 2
Классы: 9,10

Чему равна сумма arctg x + arcctg x
Прислать комментарий     Решение


Задача 61225

Тема:   [ Обратные тригонометрические функции ]
Сложность: 2+
Классы: 9,10

Вычислите:
а) arccos$ \left[\vphantom{\sin\left(-\frac{\pi}{7}\right)}\right.$sin$ \left(\vphantom{-\frac{\pi}{7}}\right.$ - $ {\frac{\pi}{7}}$$ \left.\vphantom{-\frac{\pi}{7}}\right)$$ \left.\vphantom{\sin\left(-\frac{\pi}{7}\right)}\right]$;
б) arcsin$ \left(\vphantom{\cos\frac{33\pi}{5}}\right.$cos$ {\frac{33\pi}{5}}$$ \left.\vphantom{\cos\frac{33\pi}{5}}\right)$.

Прислать комментарий     Решение

Задача 61227

Тема:   [ Обратные тригонометрические функции ]
Сложность: 2+
Классы: 9,10

Докажите равенства:

arctg x + arcctg x = $\displaystyle {\dfrac{\pi}{2}}$;    arcsin x + arccos x = $\displaystyle {\dfrac{\pi}{2}}$.


Прислать комментарий     Решение

Задача 61230

Темы:   [ Обратные тригонометрические функции ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 2+
Классы: 9,10

Докажите равенство:

arctg x + arctg y = arctg $\displaystyle {\frac{x+y}{1-xy}}$ + $\displaystyle \varepsilon$$\displaystyle \pi$,

где $ \varepsilon$ = 0, если xy < 1, $ \varepsilon$ = - 1 , если xy > 1 и x < 0, $ \varepsilon$ = + 1, если xy > 1 и x > 0.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 25]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .