ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

На сферическом Солнце обнаружено конечное число круглых пятен, каждое из которых занимает меньше половины поверхности Солнца. Эти пятна предполагаются замкнутыми (т.е. граница пятна принадлежит ему) и не пересекаются между собой. Доказать, что на Солнце найдутся две диаметрально противоположные точки, не покрытые пятнами.

Вниз   Решение


Можно ли внутри правильного пятиугольника разместить отрезок, который из всех вершин виден под одним и тем же углом?

ВверхВниз   Решение


Докажите, что точка  m = 1/3 (a1 + a2 + a3)  является точкой пересечения медиан треугольника a1a2a3.

ВверхВниз   Решение


Основания равнобедренной трапеции равны a и b ( a>b ), боковая сторона равна l . Найдите радиус окружности, описанной около этой трапеции.

ВверхВниз   Решение


Среди поля проходит прямая дорога, по которой со скоростью 10 км/ч едет автобус. Укажите все точки на поле, из которых можно догнать автобус, если бежать с такой же скоростью.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 61448

 [Интерполяционная формула Ньютона]
Темы:   [ Интерполяционный многочлен Ньютона ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4
Классы: 10,11

а) Докажите, что для любого многочлена f(x) степени n существует единственное представление его в виде

Биномиальный коэффициент      интерпретируется как многочлен от переменной x. В частности, нижний индекс у биномиального коэффициента может быть любым действительным числом.

б) Докажите, что коэффициенты  d0, d1, ..., dn  в этом представлении вычисляются по формуле  dk = Δkf(0)  (0 ≤ k ≤ n).

Прислать комментарий     Решение

Задача 61449

 [Целозначные многочлены]
Темы:   [ Интерполяционный многочлен Ньютона ]
[ Треугольник Паскаля и бином Ньютона ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Целочисленные и целозначные многочлены ]
Сложность: 4
Классы: 10,11

Пусть многочлен f(x) степени n принимает целые значения в точках  x = 0, 1, ..., n.
Докажите, что     где  d0, d1, ..., dn  – некоторые целые числа.

Прислать комментарий     Решение

Задача 61451

Темы:   [ Целочисленные и целозначные многочлены ]
[ Интерполяционный многочлен Ньютона ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4
Классы: 10,11

Докажите, что если многочлен  f(x) степени n принимает целые значения в точках  x = 0, 1, ..., n,  то он принимает целые значения во всех целых точках.

Прислать комментарий     Решение

Задача 32088

Темы:   [ Свойства коэффициентов многочлена ]
[ Рациональные и иррациональные числа ]
[ Целочисленные и целозначные многочлены ]
[ Индукция (прочее) ]
[ Интерполяционный многочлен Лагранжа ]
[ Интерполяционный многочлен Ньютона ]
Сложность: 4
Классы: 8,9,10

Известно, что некоторый многочлен в рациональных точках принимает рациональные значения.
Докажите, что все его коэффициенты рациональны.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .