ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Ссылки по теме:
Статья Н. Виленкина "Комбинаторика"

Материалы по этой теме:


Подтемы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 501]      



Задача 60395

 [Шахматный город]
Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Сочетания и размещения ]
Сложность: 3
Классы: 9,10

Рассмотрим прямоугольную сетку размерами m×n – шахматный город, состоящий из "кварталов", разделённых  n – 1  горизонтальными и  m – 1  вертикальными "улицами". Каково число различных кратчайших путей на этой сетке, ведущих из левого нижнего угла ("точка"  (0, 0))  в правый верхний ("точку"  (m, n))?

Прислать комментарий     Решение

Задача 60406

Темы:   [ Раскладки и разбиения ]
[ Сочетания и размещения ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 9,10

Сколько решений имеет уравнение  x1 + x2 + x3 = 1000
  а) в натуральных;   б) в целых неотрицательных числах?

Прислать комментарий     Решение

Задача 60438

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 8,9

Сколько существует целых чисел от 1 до 16500, которые
  а) не делятся на 5;
  б) не делятся ни на 5, ни на 3;
  в) не делятся ни на 5, ни на 3, ни на 11?

Прислать комментарий     Решение

Задача 61511

Темы:   [ Раскладки и разбиения ]
[ Правило произведения ]
Сложность: 3
Классы: 8,9,10,11

Докажите, что каждое натуральное число n может быть  2n–1 – 1  различными способами представлено в виде суммы меньших натуральных слагаемых, если два представления, отличающихся хотя бы порядком слагаемых, считать различными.

Прислать комментарий     Решение

Задача 64948

Темы:   [ Турниры и турнирные таблицы ]
[ Сочетания и размещения ]
Сложность: 3
Классы: 8,9,10

В круговом шахматном турнире участвовало шесть человек: два мальчика и четыре девочки. Могли ли мальчики по итогам турнира набрать в два раза больше очков, чем девочки? (В круговом шахматном турнире каждый игрок играет с каждым по одной партии. За победу дается 1 очко, за ничью – 0,5, за поражение – 0).

Прислать комментарий     Решение

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .