Страница:
<< 41 42 43 44
45 46 47 >> [Всего задач: 519]
В трапеции ABCD даны основания AD = 16 и BC = 9. На продолжении BC выбрана такая точка M, что CM = 3,2.
В каком отношении прямая AM делит площадь трапеции ABCD?
В параллелограмме ABCD сторона AB равна 6, а высота, проведённая к основанию AD, равна 3. Биссектриса угла BAD пересекает сторону BC в точке M, причём MC = 4. N – точка пересечения биссектрисы AM и диагонали BD. Найдите площадь
треугольника BNM.
В параллелограмме ABCD на стороне AB взята точка M, причём
AB = 3AM. N – точка пересечения прямых AC и DM.
Найдите отношение площади треугольника AMN к площади всего параллелограмма.
В параллелограмме ABCD известно, что AB = 4, AD = 6. Биссектриса угла BAD пересекает сторону BC в точке M, при этом AM = 4
.
Найдите площадь четырёхугольника AMCD.
Диагональ KM трапеции KLMN в 3 раза длиннее отрезка KP
этой диагонали. Основание KN трапеции в 3 раза длиннее основания LM.
Найдите отношение площади трапеции KLMN к площади треугольника KPR, где R – точка пересечения прямой PN и стороны KL.
Страница:
<< 41 42 43 44
45 46 47 >> [Всего задач: 519]