Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 517]      



Задача 53832

Темы:   [ Трапеции (прочее) ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

В точках A и B прямой, по одну сторону от неё, восстановлены два перпендикуляра  AA1 = a  и   BB1 = b.
Докажите, что точка пересечения прямых AB1 и A1B будет находиться на одном и том же расстоянии от прямой AB независимо от положения точек A и B.

Прислать комментарий     Решение

Задача 53841

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

В равнобедренной трапеции ABCD  AB = CD = 3,  основание  AD = 7,  ∠BAD = 60°.  На диагонали BD расположена точка M так, что  BM : MD = 3 : 5.
Какую из сторон трапеции: BC или CD пересекает продолжение отрезка AM?

Прислать комментарий     Решение

Задача 53849

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Вспомогательные подобные треугольники ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC точка M лежит на стороне AC, а точка L на стороне BC расположена так, что  BL : LC = 2 : 5.  Прямая, проходящая через точку L параллельно стороне AB, пересекает отрезок BM в точке O, причём  BO : OM = 7 : 4.  Найдите отношение, в котором точка M делит сторону AC.

Прислать комментарий     Решение

Задача 53868

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вспомогательные подобные треугольники ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 3+
Классы: 8,9

На стороне BC равностороннего треугольника ABC как на диаметре внешним образом построена полуокружность, на которой взяты точки K и L, делящие полуокружность на три равные дуги. Докажите, что прямые AK и AL делят отрезок BC на равные части.

Прислать комментарий     Решение

Задача 54441

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

В трапеции ABCD одно основание в два раза больше другого. Меньшее основание равно c. Диагонали трапеции пересекаются под прямым углом, а отношение боковых сторон равно k. Найдите боковые стороны трапеции.

Прислать комментарий     Решение

Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 517]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .