Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 517]
Дан параллелограмм ABCD. Вневписанная окружность треугольника ABD касается продолжений сторон AD и AB в точках M и N.
Докажите, что точки пересечения отрезка MN с BC и CD лежат на вписанной окружности треугольника BCD.
Из центра каждой из двух данных окружностей проведены касательные к другой окружности.
Докажите, что хорды, соединяющие точки пересечения касательных с окружностями, (см. рис.) равны.
Докажите, что если ∠BAC = 2∠ABC, то
BC² = (AC + AB)·AC.
|
|
Сложность: 3+ Классы: 8,9,10
|
Две окружности Ω1 и Ω2 с центрами O1 и O2 касаются внешним образом в точке O. Точки X и Y лежат на Ω1 и Ω2 соответственно так, что лучи O1X и O2Y одинаково направлены. Из точки X проведены касательные к Ω2, а из точки Y – к Ω1. Докажите, что эти четыре прямые касаются одной окружности, проходящей через точку O.
|
|
Сложность: 3+ Классы: 8,9,10
|
Дан треугольник ABC. Прямая, параллельная AC, пересекает стороны AB и BC в точках P и T соответственно, а медиану AM – в точке Q. Известно, что PQ = 3, а QT = 5. Найдите длину AC.
Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 517]