Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 102]
|
|
Сложность: 5- Классы: 10,11
|
Докажите, что первые цифры чисел вида 22n
образуют непериодическую последовательность.
|
|
Сложность: 5- Классы: 9,10,11
|
Последовательность {an} строится следующим образом: a1 = p – простое число, имеющее ровно 300 ненулевых цифр, an+1 – период десятичной дроби
1/an, умноженный на 2. Найдите число a2003.
|
|
Сложность: 5 Классы: 8,9,10
|
Володя решил стать великим писателем. Для этого он каждой букве русского языка сопоставил слово, содержащее эту букву. Потом написал слово, сопоставленное букве "A". Дальше каждую букву в нем заменил на сопоставленное ей слово (разделяя слова пробелами), потом в получившемся тексте вновь заменил каждую букву на сопоставленное ей слово, и так всего 40 раз. Володин текст начинается так: "РЯД КОРАБЛЕЙ НА ДРЕМЛЮЩИХ МОРЯХ". Докажите, что этот оборот встречается в Володином тексте еще хотя бы раз.
|
|
Сложность: 5+ Классы: 9,10,11
|
Двое играют в такую игру. Из кучки, где имеется 25 спичек, каждый берёт себе по очереди одну, две или три спички. Выигрывает тот, у кого в конце
игры – после того, как все спички будут разобраны, – окажется чётное число спичек.
а) Кто выигрывает при правильной игре – начинающий или его партнёр? Как он должен играть, чтобы выиграть?
б) Как изменится ответ, если считать, что выигрывает забравший нечётное число спичек?
в) Исследуйте эту игру в общем случае, когда спичек 2n + 1 и разрешено брать любое число спичек от 1 до m.
|
|
Сложность: 2+ Классы: 7,8,9
|
На экране компьютера горит число, которое каждую минуту увеличивается на
102. Начальное значение числа 123. Программист Федя имеет возможность в любой
момент изменять порядок цифр числа, находящегося на экране. Может ли он
добиться того, чтобы число никогда не стало четырёхзначным?
Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 102]