|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Радиус вписанной в треугольник ABC окружности равен 4, причём AC = BC. На прямой AB взята точка D, удалённая от прямых AC и BC на расстояния 11 и 3 соответственно. Найдите косинус угла DBC. Четырёхугольная пирамида SABCD вписана в сферу. Из вершин A, B, C, D опущены перпендикуляры AA1, BB1, CC1, DD1 на прямые SC, SD, SA, SB соответственно. Оказалось, что точки S, A1, B1, C1, D1 различны и лежат на одной сфере. Докажите, что точки A1, B1, C1, D1 лежат в одной плоскости. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 152]
Докажите, что высота прямоугольного треугольника, проведённая из вершины прямого угла, разбивает треугольник на два подобных треугольника.
Боковая сторона треугольника разделена на пять равных частей; через точки деления проведены прямые, параллельные основанию.
Каждая из двух сторон треугольника разделена на семь равных частей; соответствующие точки деления соединены отрезками.
Основания трапеции равны 1,8 и 1,2; боковые стороны, равные 1,5 и 1,2, продолжены до взаимного пересечения.
На стороне BC треугольника ABC как на диаметре построена
окружность, пересекающая стороны AB и AC в точках M и N.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 152] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|