Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 158]
Какое наибольшее число королей можно поставить на шахматной доске так, чтобы никакие два из них не били друг друга?
|
|
Сложность: 3 Классы: 7,8,9,10,11
|
На доске размером 8×8 в углу расставлены 9 фишек в форме квадрата 3×3. Любая фишка может прыгать через другую фишку на свободную клетку (по горизонтали, вертикали или диагонали). Можно ли за некоторое количество прыжков расставить фишки в форме такого же квадрата в каком-либо другом углу доски?
|
|
Сложность: 3 Классы: 8,9,10,11
|
Из клетчатой доски размером 8×8 выпилили восемь прямоугольников размером 2×1. После этого из оставшейся части требуется выпилить квадрат размером 2×2. Обязательно ли это удастся?
|
|
Сложность: 3 Классы: 8,9,10,11
|
На доске $6\times6$ расставили шесть не угрожающих друг другу ладей. Затем каждое не занятое ладьёй поле покрасили по такому правилу: если ладьи, угрожающие этому полю, находятся от него на одинаковом расстоянии, то это поле закрашивают в красный цвет, а если на разном – то в синий цвет. Могли ли все не занятые поля оказаться
а) красными;
б) синими?
[Летучая ладья]
|
|
Сложность: 3 Классы: 7,8
|
На шахматной доске 4×4 расположена фигура – "летучая ладья", которая ходит так же, как обычная ладья, но не может за один ход стать на поле, соседнее с предыдущим. Может ли она за 16 ходов обойти всю доску, становясь на каждое поле по разу, и вернуться на исходное поле?
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 158]