Страница: 1 [Всего задач: 3]
|
|
Сложность: 4 Классы: 8,9,10,11
|
Правильный треугольник, лежащий в плоскости $\alpha$, ортогонально спроектировали на непараллельную ей плоскость $\beta$, полученный треугольник ортогонально спроектировали на плоскость $\gamma$ и получили снова правильный треугольник. Докажите, что
а) угол между плоскостями $\alpha$ и $\beta$ равен углу между плоскостями $\beta$ и $\gamma$;
б) плоскость $\beta$ пересекает плоскости $\alpha$ и $\gamma$ по перпендикулярным друг другу прямым.
|
|
Сложность: 5 Классы: 9,10,11
|
Пусть $\gamma_A$, $\gamma_B$, $\gamma_C$ – вневписанные окружности треугольника $ABC$, касающиеся сторон $BC$, $CA$, $AB$ соответственно. Обозначим через $l_A$ общую внешнюю касательную окружностей $\gamma_B$ и $\gamma_C$, отличную от $BC$. Аналогично определим $l_B$, $l_C$. Из точки $P$, лежащей на $l_A$, проведем отличную от $l_A$ касательную к $\gamma_B$ и найдем точку $X$ ее пересечения с $l_C$. Аналогично найдем точку $Y$ пересечения касательной из $P$ к $\gamma_C$ с $l_B$. Докажите, что прямая $XY$ касается $\gamma_A$.
|
|
Сложность: 4- Классы: 9,10,11
|
Точки K и L делят медиану AM треугольника ABC на три равные части, точка K лежит между L и . Отметили точку P так, что треугольники KPL и ABC подобны, причём P и C лежат в одной полуплоскости относительно прямой AM. Докажите, что P лежит на прямой AC.
Страница: 1 [Всего задач: 3]