Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На сторонах AB, BC и CA произвольного треугольника ABC взяты точки C1, A1 и B1 соответственно. Обозначим через S1, S2 и S3 площади треугольников AB1C1, BA1C1, CA1B1 соответственно. Докажите, что  

Вниз   Решение


Артемон подарил Мальвине букет из аленьких цветочков и чёрных роз. У каждой чёрной розы 4 пестика и 4 тычинки, а на стебле два листка. У каждого аленького цветочка 8 пестиков и 10 тычинок, а на стебле три листка. Листков в букете на 108 меньше, чем пестиков. Сколько тычинок в букете?

Вверх   Решение

Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 501]      



Задача 52589

Темы:   [ Диаметр, основные свойства ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

В четырёхугольнике ABCD углы B и D — прямые. Диагональ AC образует со стороной AB острый угол в 40o, а со стороной AD -- угол в 30o. Найдите острый угол между диагоналями AC и BD.

Прислать комментарий     Решение


Задача 52842

Темы:   [ Теорема синусов ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Около треугольника ABC, в котором BC = a, $ \angle$B = $ \alpha$, $ \angle$C = $ \beta$, описана окружность. Биссектриса угла A пересекает эту окружность в точке K. Найдите AK.

Прислать комментарий     Решение


Задача 55556

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Докажите, что трапеция является равнобедренной тогда и только тогда, когда около неё можно описать окружность.

Прислать комментарий     Решение


Задача 52989

Темы:   [ Теорема косинусов ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Правильный треугольник ABC со стороной, равной 3, вписан в окружность. Точка D лежит на окружности, причём хорда AD равна $ \sqrt{3}$. Найдите хорды BD и CD.

Прислать комментарий     Решение


Задача 53079

Темы:   [ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC угол B — прямой, величина угол C равен $ \alpha$ ( $ \alpha$ > $ {\frac{\pi}{4}}$), точка D — середина гипотенузы. Точка A1 симметрична точке A относительно прямой BD. Найдите угол BA1C.

Прислать комментарий     Решение


Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .