ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 205]      



Задача 65111

Темы:   [ Математическая логика (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Оценка + пример ]
Сложность: 3+
Классы: 8,9,10

За круглым столом сидят 2015 человек, каждый из них – либо рыцарь, либо лжец. Рыцари всегда говорят правду, лжецы всегда лгут. Им раздали по одной карточке, на каждой карточке написано по числу; при этом все числа на карточках различны. Посмотрев на карточки соседей, каждый из сидящих за столом сказал: "Мое число больше, чем у каждого из двух моих соседей". После этого k из сидящих сказали: "Мое число меньше, чем у каждого из двух моих соседей". При каком наибольшем k это могло случиться?

Прислать комментарий     Решение

Задача 65497

Тема:   [ Математическая логика (прочее) ]
Сложность: 3+
Классы: 5,6,7

На школьный Новогодний праздник в городе Лжерыцарске пришёл 301 ученик. Из них некоторые всегда говорят правду, а остальные – всегда лгут. Каждый из 200 школьников сказал: "Если я выйду из зала, то среди оставшихся учеников большинство будет лжецами". Каждый из остальных школьников заявил: "Если я выйду из зала, то среди оставшихся учеников лжецов будет вдвое больше, чем говорящих правду". Сколько лжецов было на празднике?

Прислать комментарий     Решение

Задача 65628

Тема:   [ Математическая логика (прочее) ]
Сложность: 3+
Классы: 5,6,7

На кружок пришли дети из двух классов: Ваня, Дима, Егор, Инна, Леша, Саша и Таня. На вопрос: "Сколько здесь твоих одноклассников?" каждый честно ответил "Двое" или "Трое". Но мальчики думали, что спрашивают только про мальчиков-одноклассников, а девочки правильно понимали, что спрашивают про всех. Кто Саша – мальчик или девочка?

Прислать комментарий     Решение

Задача 65666

Тема:   [ Математическая логика (прочее) ]
Сложность: 3+
Классы: 7,8,9

За круглым столом сидят 10 человек, каждый из которых либо рыцарь, который всегда говорит правду, либо лжец, который всегда лжёт. Двое из них заявили: "Оба моих соседа – лжецы", а остальные восемь заявили: "Оба моих соседа – рыцари". Сколько рыцарей могло быть среди этих 10 человек?

Прислать комментарий     Решение

Задача 65902

Темы:   [ Математическая логика (прочее) ]
[ Текстовые задачи (прочее) ]
[ Системы линейных уравнений ]
Сложность: 3+
Классы: 7,8

В классе учатся 30 человек: отличники, троечники и двоечники. Отличники на все вопросы отвечают правильно, двоечники всегда ошибаются, а троечники на заданные им вопросы строго по очереди то отвечают верно, то ошибаются. Всем ученикам было задано по три вопроса: "Ты отличник?", "Ты троечник?", "Ты двоечник?". Ответили "Да" на первый вопрос – 19 учащихся, на второй – 12, на третий – 9. Сколько троечников учится в этом классе?

Прислать комментарий     Решение

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 205]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .