Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

С помощью циркуля и линейки постройте отрезок, равный и параллельный данному, так, чтобы его концы лежали на данной прямой и на данной окружности.

Вниз   Решение


Для передачи сообщений по телеграфу каждая буква русского алфавита (Е и Ё отождествлены) представляется в виде пятизначной комбинации из нулей и единиц, соответствующих двоичной записи номера данной буквы в алфавите (нумерация букв начинается с нуля). Например, буква А представляется в виде 00000, буква Б - 00001, буква Ч – 10111, буква Я – 11111. Передача пятизначной комбинации производится по кабелю, содержащему пять проводов. Каждый двоичный разряд передается по отдельному проводу. При приеме сообщения Криптоша перепутал провода, поэтому вместо переданного слова получен набор букв ЭАВЩОЩИ. Найдите переданное слово.

ВверхВниз   Решение


AL – биссектриса треугольника ABC , K – точка на стороне AC , причём CK=CL . Прямая LK и биссектриса угла B пересекаются в точке P . Докажите, что AP=PL .

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 182]      



Задача 35447

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Площадь (прочее) ]
Сложность: 3
Классы: 9,10

На какое минимальное число равновеликих треугольников можно разрезать квадрат 8*8 с вырезанной угловой клеткой?
Прислать комментарий     Решение


Задача 66623

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Площади криволинейных фигур ]
Сложность: 3
Классы: 9,10,11

Требуется разделить криволинейный треугольник на рисунке на 2 части одинаковой площади, проведя одну линию циркулем. Это можно сделать, выбрав в качестве центра одну из отмеченных точек и проводя дугу через другую отмеченную точку. Найдите способ это сделать и докажите, что он подходит.

Прислать комментарий     Решение

Задача 34917

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Куб ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3+
Классы: 10,11

На какое наименьшее число тетраэдров можно разбить куб?

Прислать комментарий     Решение

Задача 35481

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3+
Классы: 8,9,10

Докажите, что любой выпуклый многоугольник можно разрезать на остроугольные треугольники.
Прислать комментарий     Решение


Задача 58238

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Подобные фигуры ]
[ Вписанные четырехугольники (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Трапеции (прочее) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9,10

Докажите, что если выпуклый четырёхугольник ABCD можно разрезать на два подобных четырёхугольника, то ABCD – трапеция или параллелограмм.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 182]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .