ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 87104

Темы:   [ Перпендикуляр и наклонная ]
[ Расстояние между скрещивающимися прямыми ]
Сложность: 3
Классы: 8,9

Докажите, что общий перпендикуляр двух скрещивающихся прямых есть наименьшее из расстояний между точками этих прямых.
Прислать комментарий     Решение


Задача 87423

Тема:   [ Перпендикуляр и наклонная ]
Сложность: 3
Классы: 10,11


Основанием прямого параллелепипеда служит параллелограмм с углом 120o и сторонами, равными 3 и 4. Меньшая диагональ параллелепипеда равна большей диагонали основания. Найдите объем параллелепипеда.

Прислать комментарий     Решение


Задача 54431

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Перпендикуляр и наклонная ]
Сложность: 2+
Классы: 8,9

В равнобедренном треугольнике ABC длина основания AC равна 2$ \sqrt{7}$, длина боковой стороны равна 8. Точка K делит высоту BD треугольника в отношении 2:3, считая от точки B. Что больше: длина CK или длина AC?

Прислать комментарий     Решение


Задача 107711

Темы:   [ Четырехугольная пирамида ]
[ Перпендикуляр и наклонная ]
[ Против большей стороны лежит больший угол ]
[ Неравенства с углами ]
Сложность: 3
Классы: 10,11

Основание пирамиды Хеопса — квадрат, а её боковые грани — равные равнобедренные треугольники. Буратино лазил наверх и измерил угол грани при вершине. Получилось 100o. Может ли так быть?
Прислать комментарий     Решение


Задача 73545

Темы:   [ Покрытия ]
[ Теорема Хелли ]
[ Общие четырехугольники ]
[ Перпендикуляр и наклонная ]
Сложность: 5+
Классы: 8,9,10

Четыре круга, центры которых являются вершинами выпуклого четырёхугольника, целиком покрывают этот четырёхугольник. Докажите, что из них можно выбрать три круга, которые покрывают треугольник с вершинами в центрах этих кругов.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .