Страница:
<< 32 33 34 35
36 37 38 >> [Всего задач: 215]
|
|
Сложность: 5+ Классы: 9,10,11
|
В каждую клетку бесконечного листа клетчатой бумаги вписано некоторое число так, что сумма чисел в любом квадрате, стороны которого идут по линиям сетки, по модулю не превосходит единицы.
а) Докажите существование такого числа c, что сумма чисел в любом прямоугольнике, стороны которого идут по линиям сетки, не больше c; другими словами, докажите, что суммы чисел в прямоугольниках ограничены.
б) Докажите, что можно взять c = 4.
в) Улучшите эту оценку – докажите, что утверждение верно для c = 3.
г) Постройте пример, показывающий, что при c > 3 утверждение неверно.
|
|
Сложность: 6 Классы: 8,9,10,11
|
У Полины есть колода из 36 карт (4 масти по 9 карт в каждой). Она
выбирает из неё половину карт, какие хочет, и отдает Василисе, а
вторую половину оставляет себе. Далее каждым ходом игроки по очереди
открывают по одной карте по своему выбору (соперник видит масть и
достоинство открытой карты), начиная с Полины. Если в ответ на ход
Полины Василиса смогла положить карту той же масти или того же
достоинства, то Василиса зарабатывает одно очко. Какое наибольшее
количество очков Василиса может гарантированно заработать?
Поняв принципы, по которым составлены таблички чисел, изображённые на рисунках, в первую табличку вставьте недостающее число, а из второй уберите лишнее число.
|
|
Сложность: 2 Классы: 6,7,8
|
Можно ли в прямоугольной таблице 5×10 так расставить числа, чтобы сумма чисел каждой строки равнялась бы 30, а сумма чисел каждого столбца равнялась бы 10?
|
|
Сложность: 2+ Классы: 6,7,8
|
В клетках таблицы 3×3 расставлены числа –1, 0, 1.
Докажите, что какие-то две из восьми сумм по всем строкам, всем столбцам и двум главным диагоналям будут равны.
Страница:
<< 32 33 34 35
36 37 38 >> [Всего задач: 215]