Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 345]
Даны прямая и две точки
A и
B по одну сторону от неё. Найти на прямой такую
точку
M, чтобы сумма
MA +
MB равнялась заданному отрезку.
|
|
Сложность: 4 Классы: 10,11
|
В равнобедренном треугольнике ABC (AB = AC) угол A равен α. На стороне AB взята точка D так, что AD = AB/n. Найдите сумму n – 1 углов, под которыми виден отрезок AD из точек, делящих сторону BC на n равных частей:
а) при n = 3;
б) при произвольном n.
|
|
Сложность: 4 Классы: 7,8,9
|
Дан квадрат со стороной 1, внутренние стенки которого зеркальны. Из вершины квадрата был пущен луч света, который 1000 раз отразился от стенок, после чего попал в (возможно, другую) вершину квадрата. Какой минимальный путь мог при этом пройти луч света?
|
|
Сложность: 4 Классы: 8,9,10
|
В окружности с центром O проведены три равные хорды AB, CD и PQ (см. рисунок). Докажите, что MOK равен половине угла BLD.
Окружности
S1
и
S2
с центрами
O1
и
O2
пересекаются в точках
A и
B . Окружность, проходящая
через точки
O1
,
O2
и
A , вторично пересекает
окружность
S1
в точке
D , окружность
S2
– в
точке
E , а прямую
AB – в точке
C . Докажите, что
CD=CB=CE .
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 345]